Auxins are a class of plant hormones (or plant growth substances) with some morphogen-like characteristics. Auxins have a cardinal role in coordination of many growth and behavioral processes in the plant's life cycle and are essential for plant body development. Auxins and their role in plant growth were first described by the Dutch scientist Frits Went.[1] Kenneth V. Thimann isolated this phytohormone and determined its chemical structure as indole-3-acetic acid. Went and Thiman then co-authored a book on plant hormones, Phytohormones, in 1937.
Native auxins
Contents |
Auxins derive their name from the Greek word αυξειν (auxein - "to grow/increase"). They were the first of the major plant hormones to be discovered.
The (dynamic and to environment responsive) pattern of auxin distribution within the plant is a key factor for plant growth, its reaction to its environment, and specifically for development of plant organs[4][5] (such as leaves or flowers). It is achieved through very complex and well coordinated active transport of auxin molecules from cell to cell throughout the plant body — by the so-called polar auxin transport.[4] Thus, a plant can (as a whole) react to external conditions and adjust to them, without requiring a nervous system. Auxins typically act in concert with, or in opposition to, other plant hormones. For example, the ratio of auxin to cytokinin in certain plant tissues determines initiation of root versus shoot buds.
On the molecular level, all auxins are compounds with an aromatic ring and a carboxylic acid group.[3] The most important member of the auxin family is indole-3-acetic acid (IAA).[2] IAA generates the majority of auxin effects in intact plants, and is the most potent native auxin. And as native auxin, its stability is controlled in many ways in plants, from synthesis, through possible conjugation to degradation of its molecules, always according to the requirements of the situation. However, molecules of IAA are chemically labile in aqueous solution, so it is not used commercially as a plant growth regulator.
Some synthetic auxins, such as 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), are used also as herbicides. Broad-leaf plants (dicots), such as dandelions, are much more susceptible to auxins than narrow-leaf plants (monocots) such as grasses and cereal crops, so these synthetic auxins are valuable as synthetic herbicides.
Auxins are also often used to promote initiation of adventitious roots, and are the active ingredient of the commercial preparations used in horticulture to root stem cuttings. They can also be used to promote uniform flowering and fruit set, and to prevent premature fruit drop.
Auxins coordinate development at all levels in plants, from the cellular level, through organs, and ultimately to the whole plant.
Auxin molecules present in cells may trigger responses directly through stimulation or inhibition of the expression of sets of certain genes.[6] or by means independent of gene expression.
One of the pathways leading to the changes of gene expression involves the reception of auxin by TIR1 protein. In 2005, the F-box protein TIR1, which is part of the ubiquitin ligase complex SCFTIR1, was demonstrated to be an auxin receptor.[7] Upon binding of auxin, TIR1 recruits specific transcriptional repressors (the Aux/IAA repressors) for ubiquitination by the SCF complex.
This marking process leads to the degradation of the Aux/IAAs repressors by the proteasome. The degradation of the repressors leads, in turn, to potentiation of auxin response factor-mediated transcription of specific genes in response to auxins.[8])
Another protein, auxin-binding protein 1 (ABP1), is a putative receptor for different signaling pathway, but its role is as yet unclear. Electrophysiological experiments with protoplasts and anti-ABP1 antibodies suggest ABP1 may have a function at the plasma membrane, and cells can possibly use ABP1 proteins to respond to auxin through means faster and independent of gene expression.
On the cellular level, auxin is essential for cell growth, affecting both cell division and cellular expansion. Auxin concentration level, together with other local factors, contributes to cell differentiation and specification of the cell fate.
Depending on the specific tissue, auxin may promote axial elongation (as in shoots), lateral expansion (as in root swelling), or isodiametric expansion (as in fruit growth). In some cases (coleoptile growth), auxin-promoted cellular expansion occurs in the absence of cell division. In other cases, auxin-promoted cell division and cell expansion may be closely sequenced within the same tissue (root initiation, fruit growth). In a living plant, auxins and other plant hormones nearly always appear to interact to determine patterns of plant development.
Growth and division of plant cells together result in growth of tissue, and specific tissue growth contributes to the development of plant organs.
Growth of cells contributes to the plant's size, unevenly localized growth produces bending, turning and directionalization of organs- for example, stems turning toward light sources (phototropism), roots growing in response to gravity (gravitropism), and other tropisms originated because cells on one side grow faster than the cells on the other side of the organ. So, precise control of auxin distribution between different cells has paramount importance to the resulting form of plant growth and organization.
To cause growth in the required domains, auxins must of necessity be active preferentially in them. Auxins are not synthesized in all cells (even if cells retain the potential ability to do so, only under specific conditions will auxin synthesis be activated in them). For that purpose, auxins have to be not only translocated toward those sites where they are needed, but also they must have an established mechanism to detect those sites. For that purpose, auxins have to be translocated toward those sites where they are needed. Translocation is driven throughout the plant body, primarily from peaks of shoots to peaks of roots (from up to down).
For long distances, relocation occurs via the stream of fluid in phloem vessels, but, for short-distance transport, a unique system of coordinated polar transport directly from cell to cell is exploited. This short-distance, active transport exhibits some morphogenetic properties.
This process, the polar auxin transport, is directional, very strictly regulated, and based in uneven distribution of auxin efflux carriers on the plasma membrane, which send auxins in the proper direction. Pin-formed (PIN) proteins are vital in transporting auxin.[5][9]
The regulation of PIN protein localisation in a cell determines the direction of auxin transport from cell, and concentrated effort of many cells creates peaks of auxin, or auxin maxima (regions having cells with higher auxin - a maximum).[5] Proper and timely auxin maxima within developing roots and shoots are necessary to organise the development of the organ.[4][10][11] Surrounding auxin maxima are cells with low auxin troughs, or auxin minima. For example, in the Arabidopsis fruit, auxin minima have been shown to be important for its tissue development.[12]
As auxins contribute to organ shaping,[4][5] they are also fundamentally required for proper development of the plant itself.[4] Without hormonal regulation and organization, plants would be merely proliferating heaps of similar cells. Auxin employment begins in the embryo of the plant, where directional distribution of auxin ushers in subsequent growth and development of primary growth poles, then forms buds of future organs. Next, it helps to coordinate proper development of the arising organs, such as roots, cotyledons and leaves and mediates long distance signals between them, contributing so to the overal architecture of the plant.[4] Throughout the plant's life, auxin helps the plant maintain the polarity of growth,[4] and actually "recognize" where it has its branches (or any organ) connected.
An important principle of plant organization based upon auxin distribution is apical dominance, which means the auxin produced by the apical bud (or growing tip) diffuses (and is transported) downwards and inhibits the development of ulterior lateral bud growth, which would otherwise compete with the apical tip for light and nutrients. Removing the apical tip and its suppressively acting auxin allows the lower dormant lateral buds to develop, and the buds between the leaf stalk and stem produce new shoots which compete to become the lead growth. The process is actually quite complex, because auxin transported downwards from the lead shoot tip has to interact with several other plant hormones (such as strigolactones or cytokinins) in the process on various positions along the growth axis in plant body to achieve this phenomenon. This plant behavior is used in pruning by horticulturists.
Finally, the sum of auxin arriving from stems to roots influences the degree of root growth. If shoot tips are removed, the plant does not react just by outgrowth of lateral buds — which are supposed to replace to original lead. It also follows that smaller amount of auxin arriving to the roots results in slower growth of roots and the nutrients are subsequently in higher degree invested in the upper part of the plant, which hence starts grow faster.
Auxin participates in phototropism, geotropism, hydrotropism and other developmental changes. The uneven distribution of auxin, due to environmental cues, such as unidirectional light or gravity force, results in uneven plant tissue growth, and generally, auxin governs the form and shape of plant body, direction and strength of growth of all organs, and their mutual interaction.[5]
Auxin stimulates cell elongation by stimulating wall-loosening factors, such as elastins, to loosen cell walls. The effect is stronger if gibberellins are also present. Auxin also stimulates cell division if cytokinins are present. When auxin and cytokinin are applied to callus, rooting can be generated if the auxin concentration is higher than cytokinin concentration. Xylem tissues can be generated when the auxin concentration is equal to the cytokinins.
Auxin also induces sugar and mineral accumulation at the site of application.
Auxin induces the formation and organization of phloem and xylem. When the plant is wounded, the auxin may induce the Cell differentiation and regeneration of the vascular tissues.
Auxins promote root initiation.[13] Auxin induces both growth of pre-existing roots and adventitious root formation, i.e., branching of the roots. As more native auxin is transported down the stem to the roots, the overall development of the roots is stimulated. If the source of auxin is removed, for example the tips of stems are trimmed, the roots are less stimulated accordingly, and growth of stem is supported instead.
In horticulture, auxins, especially NAA and IBA, are commonly applied to stimulate root initiation when rooting cuttings of plants. However, high concentrations of auxin inhibit root elongation and instead enhance adventitious root formation. Removal of the root tip can lead to inhibition of secondary root formation.
Auxin induces shoot apical dominance; the axillary buds are inhibited by auxin, as a high concentration of auxin directly stimulates ethylene synthesis in lateral buds, causing inhibition of their growth and potentiation of apical dominance. When the apex of the plant is removed, the inhibitory effect is removed and the growth of lateral buds is enhanced.
Auxin is required for fruit growth and development and delays fruit senescence. When seeds are removed from strawberries, fruit growth is stopped; exogenous auxin stimulates the growth in fruits with seeds removed. For fruit with unfertilized seeds, exogenous auxin results in parthenocarpy ("virgin-fruit" growth).
Fruits form abnormal morphologies when auxin transport is disturbed.[14] In Arabidopsis fruits, auxin controls the release of seeds from the fruit (pod). The valve margins are a specialised tissue in pods that regulates when pod will open (dehiscence). Auxin must be removed from the valve margin cells to allow the valve margins to form. This process requires modification of the auxin transporters (PIN proteins).[12]
Auxin plays also a minor role in the initiation of flowering and development of reproductive organs. In low concentrations, it can delay the senescence of flowers.
In low concentrations, auxin can inhibit ethylene formation and transport of precursor in plants; however, high concentrations can induce the synthesis of ethylene. Therefore, the high concentration can induce femaleness of flowers in some species.
Auxin inhibits abscission prior to formation of abscission layer, and thus inhibits senescence of leaves.
In the course of research on auxin biology, many compounds with noticeable auxin activity were synthesized. Many of them had been found to have economical potential for man-controlled growth and development of plants in agronomy. Synthetic auxins include the following compounds:
Auxins are toxic to plants in large concentrations; they are most toxic to dicots and less so to monocots. Because of this property, synthetic auxin herbicides, including 2,4-D and 2,4,5-T, have been developed and used for weed control.
However, synthetic auxins, especially 1-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA), are also commonly applied to stimulate root growth when taking cuttings of plants or yet for different agricultural application as is the prevention of fruit drop in orchards.
Used in high doses, auxin stimulates the production of ethylene. Excess ethylene (also native plant hormone) can inhibit elongation growth, cause leaves to fall (abscission), and even kill the plant. Some synthetic auxins, such as 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were marketed also as herbicides. Dicots, such as dandelions, are much more susceptible to auxins than monocots), such as grasses and cereal crops. So, these synthetic auxins are valuable as synthetic herbicides. 2,4-D was the first widely used herbicide, and it is still so.[15] 2,4-D was first commercialized by the Sherwin-Williams company, and saw use in the late 1940s. It is easy and inexpensive to manufacture.
The defoliant Agent Orange, used extensively by American forces in the Vietnam War, was a mix of 2,4-D and 2,4,5-T. The compound 2,4-D is still in use and is thought to be safe, but 2,4,5-T was more or less banned by the EPA in 1979. The dioxin TCDD is an unavoidable contaminant produced in the manufacture of 2,4,5-T. As a result of the integral dioxin contamination, 2,4,5-T has been implicated in leukemia, miscarriages, birth defects, liver damage, and other diseases.
|